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I. Introduction

M ODEL updating is a method of correcting analytical models,
such as the finite element model, by improving the correlation

between the measured data and the analytical model. The correlation
can be determined by a penalty function that involves modal data
such as natural frequencies and mode shapes [1,2]. However, a
modal sensitivity matrix that is ill conditioned due to a lack of modal
data can incur inaccurate model updating. For more efficient model
updating, we need to increase the amount of modal data. Recently,
some researchers have used closed-loop schemes to capture
additional modal data [3,4]. Strain mode shapes have also been used
instead of displacement mode shapes because of their perceived
advantages [5,6]. For example, the difference in the strain mode
shapes of an intact case and a damaged case is greater than the
corresponding difference in the displacement mode shapes. This
phenomenon explains why strain mode shapes are generally
considered more sensitive than displacement mode shapes with
respect to the local change of a structure. However, this property is
valid when the local change of a structure can change the
displacement mode shapes because strain mode shapes are spatial
derivatives of displacement mode shapes.

If we simultaneously use strain mode shapes and the closed-loop
scheme, we can enhance the performance of model updating. We,
therefore, propose a novel method of combining strain mode shapes
and the closed-loop scheme for effective model updating. In
addition, to demonstrate the feasibility of the proposed method, we
provide a numerical simulation of model updating based on the
closed-loop strain mode shapes.

II. Model Updating with Modal Data

A. Combined Modal Sensitivity Matrix

Our method of using modal data for model updating relies on the
following penalty function, which uses a truncated Taylor series
expansion of the modal data with respect to the parameters:

�z� Sj�� (1)

where ��� � � �j is the perturbation in the parameters, �z� zm �
zj is the error in the measured modal data, Sj is the modal sensitivity
matrix, and j is the number of iterations. This set of equations is
usually ill conditioned because of insufficient modal data. If the
amount ofmodal data is increased,we canmake themodal sensitivity
matrix well conditioned. To this end, we suggest to use a feedback
control idea, such as the mode decoupling controller [4]. If the
additional modal data are measured, the combined sensitivity matrix
can be obtained as

T � So Sc1 Sc2 � � � Sci
� �

T (2)

where the superscripto represents an open loop and the superscript ci
represents a closed loop.

B. Strain-Based Equation of Motions and the Associated Modal

Sensitivity Matrix

Strain quantities are generally less frequently used for acquiring
modal data than accelerations or displacements. If we collect strains
as the output quantities for modal testing, we can measure the
associated modal data, such as the natural frequencies and the strain
mode shapes. In this case, if the equation of motions for an analytical
model can be represented by strain quantities, we can conveniently
compare the measured data and the analytical model. Furthermore, a
strain-based equation of motion is helpful when we analytically
derive a strain-based modal sensitivity matrix for model updating.

Because of the above-mentioned reasons, we elucidate the strain-
based equation of motions as briefly as possible [7]. To begin with,
we applied a substructural representation to the system energy as
follows:

� �u;�;ug� � uT
�
1
2
Ku � f�M �u�D _u

�
� �TBT

��u �Lug�

(3)

whereM,D, andK are the substructural mass, the damping, and the
stiffness matrices, respectively; � represents the localized
Lagrangian multipliers; u and ug are the substructural and
assembled displacements; L is the disassembly Boolean matrix that
relates the assembled and substructural displacements; and B� is a
Boolean operator that extracts the partition boundary nodes of all the
partitioned substructures. To represent the equation ofmotions based
on the strain quantities, we need to use the following strain-to-
displacement relation:

u ��q�� sT �T
� �

T (4)

where � is the strain-to-displacement relation matrix, s is the strain
variable, and � is the rigid-mode amplitude. If u is replaced with�q
in Eq. (3), we can restate the system energy as

��q;�;ug� � ��q�T
�
1
2
K�q � f�M� �q�D� _q

�

� �TBT
���q �Lug� (5)

Thus, the stationary value of �� produces the following matrix
equation set:
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whereM� ��TM�,D� ��TD�,K� ��TK�, andLb �BT
�L.

We can then rearrange the first row in Eq. (6) as

M � �q� b ��b�; �b ��TB�; b��Tf � D� _q �K�q

(7)

After two time differentiations, we can state the second row of Eq. (6)
as

� T
b �q �Lb �ug � 0 (8)

which, if Eq. (7) is used, becomes

� T
bM

�1
� �b ��b�� �Lb �ug � 0 (9)

We can therefore yield � as follows:
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Next, by inserting Eq. (10) into the last row of Eq. (6), we obtain the
following:
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From Eqs. (10) and (11), � is derived as
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By eliminating � from Eqs. (6) and (12), we can then obtain the
following equation:

M � �q� b ��b�� b ��bPb�
T
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which can be rearranged as follows in a standard second-order form:

M � �q� P�D� _q� P�K�q� P�f�; f� ��Tf (14)

To derive the strain modal sensitivity matrix, we use the modal
sensitivity matrix which contains the first derivative of the strain
mode shapes with respect to the updating parameters. The first
derivative of the strain mode shapes can then be derived from
Eq. (14) for a nonself-adjoint case as follows:
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where R;j and L;j are the right and left strainmode shapes at the jth
mode, respectively, �j is the eigenvalue (the square of natural
frequency) at the jth mode, and � is an updating parameter.
Equation (15) is a modified version of the first derivative of the
displacement mode shapes which was proposed in [8]. By using
Eq. (15), we can then build the combinedmodal sensitivitymatrix for
model updating.

III. Closed-Loop Systems for Model Updating

The strain-based equation of motions can be rewritten as follows
to include a matrix output equation:

M � �q� P�D� _q� P�K�q� P��
Tf� P��

Tb2r; y �Coqq

(16)

where b2 is the substructural input influence matrix, r is the exciter
reference signal, y is the output vector, and Coq is the output
influence matrix. In addition, for simplicity, we assumed a
proportional damping property. If we build the closed-loop systems
via strain output feedback, the closed-loop equation of motions is
derived as follows:

M� �q� P�D� _q� P�K�q� P��
Tb2�r �Gy�

� P��
Tb2�r �GCoqq� (17)

The dynamic property of the closed-loop system depends on the gain
vector G as in the following equation:

M � �q� P�D� _q� P�
�
K� ��Tb2GCoq

�
q� P��

Tb2r (18)

Our calculation of the gain vector G follows the rule of the mode
decoupling controller [4]. This controller can shift the target mode,
thereby, leaving the nontarget mode unchanged and breaking the
coupling of themodes. The gain vectorG can be worked out through
the open-loop strain mode shapes as follows:

G T � Null
�
 ̂1 � � �  ̂t�1  ̂t�1 � � �  ̂l
� �

T
�

(19)

where the open-loop strain mode shapes  ̂�  ̂R �  ̂L (which are
due to the self-adjoint property) are determined from measurements,
t is used to designate the target mode, and l is the number of modes.
The strain mode shapes become real values because of the
assumption of the proportional damping property. Any mode can be
fixed if the number of sensors is equal to the number of modes. The
gain vector for the mode decoupling controller can also be explained
from a modal sensor point of view [9]. We can determine the gains
and locations of the sensors to sense a target mode or a set of targeted
modes; this kind of sensor is called a modal sensor. The output
equation can then be expressed in modal coordinates as follows:

y �Coqq�Coq qm �Cmqqm; Coq �Cmq (20)

If we say thatCmq�i� � 0 if i ≠ t, and Cmq�i� � 1 if i� t, where
Cmq is the 1 � l modal output vector, we can obtain the influence
matrix, Coq, as follows:

C oq �Cmq 
� (21)

Consequently, the unit-normalized Coq from Eq. (21) and the gain
vectorG fromEq. (19) are the same. Therefore, the physicalmeaning
of the gain vector for the mode decoupling controller can be
interpreted as that of a modal sensor. Strictly speaking, the modal
output feedback is incorporated into themode decoupling controller.

If the strain mode shapes are mass normalized, we can rewrite
Eq. (18) in modal coordinates as follows:

I �qm � 2Z� _qm � ��2 � bmgm�qm � bmr

where bm � T�Tb2; gm �GCoq 
(22)

where � is a diagonal matrix of natural frequencies, Z is a modal
damping matrix, and bm is a modal input matrix. Thus, the closed-
loop modal data can be expressed as follows:

Table 1 Beam thickness of each element as an updating

parameter (unit: mm)

Element no. 2 3 4 5 6 7 8 9

Initial 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Actual 4.80 4.70 4.40 4.20 3.70 4.00 3.80 4.30
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IV. Numerical Simulation: Beam Thickness
Estimation

For comparison, we conducted a numerical simulation of model
updating via accelerometers and strain gages. We assumed the
standard deviation of the measurement noises in the mode shapes to
be 5% of the true values, and we used a cantilever beamwith a fixed-
free boundary condition for the simulation. Next, we built a finite
element model with 10 beam elements and the model has the
following dimensions: the material density is 7:8 � 103 kg=m3, the
total length is 0.5 m, the nominal mean value of thickness is 4.4 mm,
the width is 20 mm, and the Young’s modulus is 2:1 � 1011 N=m.
The displacement and strainmode shapes can be obtained in an open-
loop system and in a closed-loop system. In the open-loop system,we
considered the first and second mode shapes, which can usually be
measured more accurately than higher modes. Subsequently, we
used only the first mode shape in closed-loop system 1 and, similarly,
we used only the second mode shape in closed-loop system 2. The
first mode is the target mode in closed-loop system 1 and the second
mode is the target mode in closed-loop system 2. Consequently, we
used four mode shapes for the model updating and we selected the
beam thickness of each element as an updating parameter. Table 1
shows the initial and actual beam thickness.

Figure 1 shows the excitation and measurement points for the
accelerometers and strain gages. Note that each bending strain is
evaluated through two axial strains and at the Barlow points [10].
After constructing the combined sensitivity matrix with the four
displacement mode shapes and the four strain mode shapes with
measurement errors, we used Eq. (1) for the model updating until the
updating parameters converged. The results of the model updating
are divided into four cases: 1) the displacement mode shapes without
closed-loop modes, 2) the displacement mode shapes with closed-
loop modes, 3) the strain mode shapes without closed-loop modes,

and 4) the strainmode shapeswith closed-loopmodes. Table 2 shows
the updated thickness according to each case.

The results of case 1 are not available because of the divergence in
the updated parameters. In spite of the same measurement errors in
the displacement and strain mode shapes, the thickness of each beam
element can be updatedmore accuratelywhen the strainmode shapes
are used. The reason for this phenomenon is that the condition
number whenwe use the strainmode shapes is considerably less than
when we use the displacement mode shapes. Note, in particular, that
the case of the strainmode shapeswith the closed-loopmodes ismore
effective than any of the other cases.

V. Conclusions

Modal data such as natural frequencies and mode shapes are
widely used in model updating. Strain mode shapes, in particular,
have great potential formodel updating applications because they are
sensitive to local changes in structure. Although strain mode shapes
have advantages over displacementmode shapes, problems still arise
as a result of insufficient modal data. To prevent this problem, we use
a mode decoupling controller that can increase the amount of modal
data. We, consequently, propose a novel method of combining the
strain mode shapes and the closed-loop scheme for effective model
updating. The reason for combining them is to decrease the condition
number of the combined modal sensitivity, thereby enhancing the
performance of the model updating. Although the proposed method
has great advantages, it also has twomain limitations. Tomeasure the
strain mode shapes, we need to use more strain sensors than
accelerometers for the displacementmode shapes. Formore complex
structures, this requirement is problematic. Secondly, due to
limitations of themode decoupling controller, if we change the strain
mode shape too much in the closed loop, the system can become
unstable. Overcoming these limitations is a goal of future research.
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