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I

ODEL updating is a method of correcting analytical models,

such as the finite element model, by improving the correlation
between the measured data and the analytical model. The correlation
can be determined by a penalty function that involves modal data
such as natural frequencies and mode shapes [1,2]. However, a
modal sensitivity matrix that is ill conditioned due to a lack of modal
data can incur inaccurate model updating. For more efficient model
updating, we need to increase the amount of modal data. Recently,
some researchers have used closed-loop schemes to capture
additional modal data [3,4]. Strain mode shapes have also been used
instead of displacement mode shapes because of their perceived
advantages [5,6]. For example, the difference in the strain mode
shapes of an intact case and a damaged case is greater than the
corresponding difference in the displacement mode shapes. This
phenomenon explains why strain mode shapes are generally
considered more sensitive than displacement mode shapes with
respect to the local change of a structure. However, this property is
valid when the local change of a structure can change the
displacement mode shapes because strain mode shapes are spatial
derivatives of displacement mode shapes.

If we simultaneously use strain mode shapes and the closed-loop
scheme, we can enhance the performance of model updating. We,
therefore, propose a novel method of combining strain mode shapes
and the closed-loop scheme for effective model updating. In
addition, to demonstrate the feasibility of the proposed method, we
provide a numerical simulation of model updating based on the
closed-loop strain mode shapes.

Introduction

II. Model Updating with Modal Data
A. Combined Modal Sensitivity Matrix
Our method of using modal data for model updating relies on the
following penalty function, which uses a truncated Taylor series
expansion of the modal data with respect to the parameters:
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where 80 = 0 — 0, is the perturbation in the parameters, §z = z,, —
z,; is the error in the measured modal data, S is the modal sensitivity
matrix, and j is the number of iterations. This set of equations is
usually ill conditioned because of insufficient modal data. If the
amount of modal data is increased, we can make the modal sensitivity
matrix well conditioned. To this end, we suggest to use a feedback
control idea, such as the mode decoupling controller [4]. If the
additional modal data are measured, the combined sensitivity matrix
can be obtained as

T=[S" S S S ] 2
where the superscript o represents an open loop and the superscript c;
represents a closed loop.

B. Strain-Based Equation of Motions and the Associated Modal
Sensitivity Matrix

Strain quantities are generally less frequently used for acquiring
modal data than accelerations or displacements. If we collect strains
as the output quantities for modal testing, we can measure the
associated modal data, such as the natural frequencies and the strain
mode shapes. In this case, if the equation of motions for an analytical
model can be represented by strain quantities, we can conveniently
compare the measured data and the analytical model. Furthermore, a
strain-based equation of motion is helpful when we analytically
derive a strain-based modal sensitivity matrix for model updating.

Because of the above-mentioned reasons, we elucidate the strain-
based equation of motions as briefly as possible [7]. To begin with,
we applied a substructural representation to the system energy as
follows:

M (u.}.u,) = u”(}Ku — f + Mii + Dit) + "B (u - Lu,)
3)

where M, D, and K are the substructural mass, the damping, and the
stiffness matrices, respectively; A represents the localized
Lagrangian multipliers; u and u, are the substructural and
assembled displacements; L is the disassembly Boolean matrix that
relates the assembled and substructural displacements; and B, is a
Boolean operator that extracts the partition boundary nodes of all the
partitioned substructures. To represent the equation of motions based
on the strain quantities, we need to use the following strain-to-
displacement relation:

u==eq=2a[s" o] 4)
where @ is the strain-to-displacement relation matrix, s is the strain
variable, and « is the rigid-mode amplitude. If u is replaced with ®q
in Eq. (3), we can restate the system energy as

M(q. A u,) = (@q)T(%Kd)q —f + M®{ + D<1>q)

+ATB!(®q — Lu,) )

Thus, the stationary value of §II produces the following matrix
equation set:
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M,(d2/dP?) + D,(d/di) + K, ®'B, 0 ;1

B/ ® 0 -L,
0 -L] 0 u,
o7t
=] 0 (6)
0

where M, = ®"M®,D, = ®'D®, K, = ®"K®,and L, = B/L.
We can then rearrange the first row in Eq. (6) as

M¢q:b_¢bl, q)b:q)TB)L, bZQTf—Dq}q_Kd)q

Q)

After two time differentiations, we can state the second row of Eq. (6)
as

®L4—Lyi, =0 ®)
which, if Eq. (7) is used, becomes
®/M;'(b—®,1)—L,ii, =0 )
We can therefore yield A as follows:

A= Mb(<I>ZM4§1b - L,,iig), M, = (<1>,{M;1<1>,,)" (10)
Next, by inserting Eq. (10) into the last row of Eq. (6), we obtain the
following:

i, =M;'LIM,®/M;'b, M, =LI!M,L, (1)

From Eqgs. (10) and (11), A is derived as

)\. = PbQZM;lb, Pb = Mb - MbLbMZILIT;Mb (12)
By eliminating A from Eqgs. (6) and (12), we can then obtain the
following equation:

M i =b—®\=b—&,P,&IM,'b=P,b
(13)
P, = (1 - <1>be<1>,{ng1)

which can be rearranged as follows in a standard second-order form:

M,q + P,Dyq + P,K,q = P,f,, f,=o'f (14)

To derive the strain modal sensitivity matrix, we use the modal
sensitivity matrix which contains the first derivative of the strain
mode shapes with respect to the updating parameters. The first
derivative of the strain mode shapes can then be derived from
Eq. (14) for a nonself-adjoint case as follows:

Mg 1
0= (,,,L] a;’w,)w,

K oM
+Zk (¢Lk|: ¢ _ /89¢]¢R,)'ﬁizk (15)

where ¥ ; and ¥, ; are the right and left strain mode shapes at the jth
mode, respectively, A; is the eigenvalue (the square of natural
frequency) at the jth mode, and 6 is an updating parameter.
Equation (15) is a modified version of the first derivative of the
displacement mode shapes which was proposed in [§]. By using
Eq. (15), we can then build the combined modal sensitivity matrix for

model updating.

III. Closed-Loop Systems for Model Updating

The strain-based equation of motions can be rewritten as follows
to include a matrix output equation:
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M, + P,D,q + P,K,q = P,@'f =P,®"b,r, y=C,.q

16)

where b, is the substructural input influence matrix, r is the exciter
reference signal, y is the output vector, and C,, is the output
influence matrix. In addition, for simplicity, we assumed a
proportional damping property. If we build the closed-loop systems
via strain output feedback, the closed-loop equation of motions is
derived as follows:

M, + P,D,q + P,K,q = P,®"b,(r — Gy)
=P,®"b,(r— GC,,q) (17)

The dynamic property of the closed-loop system depends on the gain
vector G as in the following equation:

M i + PyDyd + Py (K, + 970,GC,, )a = Py®7byr  (18)

Our calculation of the gain vector G follows the rule of the mode
decoupling controller [4]. This controller can shift the target mode,
thereby, leaving the nontarget mode unchanged and breaking the
coupling of the modes. The gain vector G can be worked out through
the open-loop strain mode shapes as follows:

GT=N([§, - Gy b o W) 19)

where the open-loop strain mode shapes q[; = 1/;R = 1/;L (which are
due to the self-adjoint property) are determined from measurements,
t is used to designate the target mode, and / is the number of modes.
The strain mode shapes become real values because of the
assumption of the proportional damping property. Any mode can be
fixed if the number of sensors is equal to the number of modes. The
gain vector for the mode decoupling controller can also be explained
from a modal sensor point of view [9]. We can determine the gains
and locations of the sensors to sense a target mode or a set of targeted
modes; this kind of sensor is called a modal sensor. The output
equation can then be expressed in modal coordinates as follows:
y= Cuqq = Cuq'/,qm = Cmqqmv Coqw = Cmq (20)
If we say that C,,,, (i) = 0if i # t,and C,,,(i) = 1 if i = ¢, where
C,,, is the 1 x I modal output vector, we can obtain the influence
matrix, C,,, as follows:

Coy=Cu¥" ey

Consequently, the unit-normalized C,, from Eq. (21) and the gain
vector G from Eq. (19) are the same. Therefore, the physical meaning
of the gain vector for the mode decoupling controller can be
interpreted as that of a modal sensor. Strictly speaking, the modal
output feedback is incorporated into the mode decoupling controller.

If the strain mode shapes are mass normalized, we can rewrite
Eq. (18) in modal coordinates as follows:

I ('illl + ZZAqm + (IX2 + bmgm)qm = bl)lr

ot (22)
:!’f @ b27 8m :Gcoq'/,

where b,,

where A is a diagonal matrix of natural frequencies, Z is a modal
damping matrix, and b,, is a modal input matrix. Thus, the closed-
loop modal data can be expressed as follows:

Table 1 Beam thickness of each element as an updating
parameter (unit: mm)

Elementno. 2 3 4 5 6 7 8 9

Initial 5.00 500 5.00 5.00 5.00 500 5.00 5.00
Actual 480 4.70 4.40 420 3.70 4.00 3.80 4.30
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Table 2 Results of updated parameters (unit: mm)

Element no. 2 3 4 5 6 7 8 9 Error norm
Actual 480 470 440 420 3770 4.00 3.80 4.30 —_
Case 2 6.50 4.11 517 3.89 387 405 380 452 2.00
Case 3 471 459 446 426 380 4.16 394 441 0.31
Case 4 478 474 442 417 376 397 389 433 0.13

ém,t + 2€twtq.m,t + (C!)% + bm.tgm.t)qm.t = bmjr
ijm.k + 2§kwkq'm,k + w%qu = bm.k(r - gm.lqm,r)v Where k 7é 4

bW =y wtz + b &mis

Si=wl/ w12 + b8
(23)

IV. Numerical Simulation: Beam Thickness
Estimation

For comparison, we conducted a numerical simulation of model
updating via accelerometers and strain gages. We assumed the
standard deviation of the measurement noises in the mode shapes to
be 5% of the true values, and we used a cantilever beam with a fixed-
free boundary condition for the simulation. Next, we built a finite
element model with 10 beam elements and the model has the
following dimensions: the material density is 7.8 x 10 kg/m?, the
total length is 0.5 m, the nominal mean value of thickness is 4.4 mm,
the width is 20 mm, and the Young’s modulus is 2.1 x 10'" N/m.
The displacement and strain mode shapes can be obtained in an open-
loop system and in a closed-loop system. In the open-loop system, we
considered the first and second mode shapes, which can usually be
measured more accurately than higher modes. Subsequently, we
used only the first mode shape in closed-loop system 1 and, similarly,
we used only the second mode shape in closed-loop system 2. The
first mode is the target mode in closed-loop system 1 and the second
mode is the target mode in closed-loop system 2. Consequently, we
used four mode shapes for the model updating and we selected the
beam thickness of each element as an updating parameter. Table 1
shows the initial and actual beam thickness.

Figure 1 shows the excitation and measurement points for the
accelerometers and strain gages. Note that each bending strain is
evaluated through two axial strains and at the Barlow points [10].
After constructing the combined sensitivity matrix with the four
displacement mode shapes and the four strain mode shapes with
measurement errors, we used Eq. (1) for the model updating until the
updating parameters converged. The results of the model updating
are divided into four cases: 1) the displacement mode shapes without
closed-loop modes, 2) the displacement mode shapes with closed-
loop modes, 3) the strain mode shapes without closed-loop modes,

b) Strain output feedback
Fig. 1 Simulation scheme.

and 4) the strain mode shapes with closed-loop modes. Table 2 shows
the updated thickness according to each case.

The results of case 1 are not available because of the divergence in
the updated parameters. In spite of the same measurement errors in
the displacement and strain mode shapes, the thickness of each beam
element can be updated more accurately when the strain mode shapes
are used. The reason for this phenomenon is that the condition
number when we use the strain mode shapes is considerably less than
when we use the displacement mode shapes. Note, in particular, that
the case of the strain mode shapes with the closed-loop modes is more
effective than any of the other cases.

V. Conclusions

Modal data such as natural frequencies and mode shapes are
widely used in model updating. Strain mode shapes, in particular,
have great potential for model updating applications because they are
sensitive to local changes in structure. Although strain mode shapes
have advantages over displacement mode shapes, problems still arise
as aresult of insufficient modal data. To prevent this problem, we use
a mode decoupling controller that can increase the amount of modal
data. We, consequently, propose a novel method of combining the
strain mode shapes and the closed-loop scheme for effective model
updating. The reason for combining them is to decrease the condition
number of the combined modal sensitivity, thereby enhancing the
performance of the model updating. Although the proposed method
has great advantages, it also has two main limitations. To measure the
strain mode shapes, we need to use more strain sensors than
accelerometers for the displacement mode shapes. For more complex
structures, this requirement is problematic. Secondly, due to
limitations of the mode decoupling controller, if we change the strain
mode shape too much in the closed loop, the system can become
unstable. Overcoming these limitations is a goal of future research.
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